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ABSTRACT 
      
 The shear mechanics of externally bonded (EB) CFRP on beams is a complex 
issue that is not yet fully understood because of their several possible failure modes. 
Uncontrolled responses in the composite RC system is attributable to EB CFRPs 
having lesser anchorage on the concrete. Many studies and real-life applications have 
used machine learning (ML) techniques to solve complex problems using datasets. 
Hyperbox modeling is an ML approach that provides interpretability and versatility in 
results generation. This study presents models using hyperboxes to determine if the 
shear strength contribution of the carbon fiber reinforced polymer (CFRP) on the 
reinforced concrete (RC) beams is sufficient. A novel feature of the approach is the 
ability to minimize misclassification errors (e.g., false positives) during the algorithm's 
training phase. The produced models were then compared with existing design codes 
to assess their performance, resulting in an accuracy yield of about 80%. Overall, this 
study shows that ML-derived rule-based decision models can sufficiently serve as a 
quick analysis guide in areas where certain behaviors or mechanics (like shear) have 
not yet been fully understood. 

 
1. INTRODUCTION 
      
 Concrete structures inevitably undergo degradation. The speed and severity of 
the degradation depend on numerous factors (e.g., temperature, hazards encountered). 
Retrofitting is a rehabilitative measure undertaken to mitigate the effects of such 
degradation, if not fully restore or enhance the original strength of the RC structure 
(Shrikande 2006). CFRPs are an example of retrofitting materials often used in civil 
engineering applications. Their versatility, strength, non-intrusiveness, and lightweight 
properties have been attributed to their frequent utilization and focus in research 
(Pampanin et al 2007; Das 2011).  
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     The CFRPs allow for multiple ways of strengthening (e.g., flexure, axial, and 
shear) RC structures in civil engineering applications (Colotti 2016). Among the many 
strengthening applications in structural mechanics, shear behavior is often regarded as 
the most difficult, having the most internal interactions that are not yet fully understood 
(Schmidt et al 2021). Researchers have developed numerous models to capture each 
component's interaction and respective contributions to shear-strengthened RC 
members (e.g., stirrups and concrete). This complexity is why shear equations in 
design codes are generally empirical, contrary to the theoretical nature of flexural and 
axial equations. The complexity of shear behavior in shear-strengthened RC members 
is enhanced when considering the applications of composite materials like CFRPs. The 
considerations in equations covering composite materials include (a) flexural-shear 
interaction failure modes, including the contribution of external shear reinforcement; (b) 
shear web-crushing; and (c) pure flexural failure modes (Abuodeh et al 2020).  
      
 Retrofitting shear-deficient RC beams commonly practice two external bonding 
(EB) configurations. These are the side-bonded and U-wrapped configurations. 
Complete wrapping of CFRPs on beams can achieve similar, if not better, results; 
however, the side-bonded and U-wrapped compositions are preferred in terms of 
practicality and ease of application (Colotti 2016). These setups, however, subject the 
composite RC system to failure modes like CFRP debonding and rupture. Analytical 
and experimental studies were conducted to understand the shear contribution of EB 
CFRP on retrofitted shear-deficient RC beams. The models produced reveal that a 
parameter called effective strain (alternatively called effective stress) is commonly used 
(Oller et al 2021; Zhou et al 2020; Chen et al 2013). A governing failure mode (e.g., 
debonding) often limits this parameter. Unfortunately, due to the many complicated, 
interrelated factors and mechanisms mentioned earlier, there has yet to be a 
consensus on how this parameter should be derived. Ultimately, the numerous 
unknown parameters and interactions in the CFRP-RC system often led to unoptimized 
use of the material and over-conservative assumed values in designing (Pohoyryles 
2016). The inability to safely predict shear-related failure is critical (relative to flexural 
failure) because of the brittle mode of failure associated. Such failure implies that a 
warning (e.g., cracks) indicating impending failure will not be given or easily seen. 
 
 The civil engineering field faces a lot of complicated problems in various facets. 
Researchers have utilized tools like ML to tackle complex issues. Unlike more popular 
branches of ML, like the artificial neural networks (ANNs), the hyperbox membership 
classification is a technique that has not yet become mainstream (Tan et al 2020). A 
significant disadvantage of ANNs is that it is subject to "catastrophic forgetting," making 
the model unable to retain previously learned patterns when new patterns become 
available (Chaabene et al 2020). This issue is more significant when the primary users 
are not the researchers themselves. 
 
 On the other hand, hyperbox classification is a versatile tool that can provide 
quickly interpretable rules when decision support is required. They provide distinct 
advantages like nonlinear separability, overlapping region, invulnerability, provision of 
soft and hard decisions, shortened training time, verification and validation, and 
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parameter adjustment minimization (Xu and Papageorgiou 2009). Three categories of 
the learning model have been identified thus far: neural network structured, non-
network structured, and hybrid tree and network structured (Khuat et al 2020). The 
neural network structured approach is the most common model and is further 
categorized into two learning groups. The fuzzy min-max neural network (FMMNN) is 
the most famous model within this category. It cannot, however, yield a compact rule 
set because many hyperboxes can be generated (Alhroob et al 2019). Alternatively, a 
non-network structured approach like the mixed integer linear programming (MILP) 
model can limit the number of hyperboxes generated. This approach enables the 
production of a compacted and optimized rule set, minimizing the number of 
misclassifications by finding the optimal hyperbox dimension and positions (Xu and 
Papageorgiou 2009). 
 
 The hyperbox categorization model, through the IF-THEN formatting of the 
generated rules, alleviates the interpretability issue that some ML models face. Aviso et 
al (2021) presented a novel MILP framework for hyperbox classification modeling. It 
features the ability to optimize the generated model by explicitly accounting for the 
Type 1 (false positive) and Type 2 (false negative) errors. Contrary to other ML models 
that rely on statistical parameters (e.g., RMSE), the hyperbox modeling approach relies 
on classification validation results. This feature enables the adequate prediction of 
CFRP shear strength contribution sufficiency (i.e., safe or unsafe) considering the 
complex mechanics and the unfinished determination of some essential parameters 
(e.g., effective stress). The classification model used in this study also adopts a holistic 
overview that does not disregard any shear action (both known and unknown).   
 
 The subsequent chapters of this paper tackle the research metholodogy (Section 
2), the machine learning model framework (Section 3), results and discussion (Section 
4), and the conclusions and recommendations (Section 5). Section 2 describes the 
development of the database and illustrates a brief overview of the experimental 
characteristics considered. The most influential parameters, as determined by the fitted 
decision tree algorithm, are likewise presented. Section 3 demonstrates the algorithm 
variables and equations used to produce the hyperboxes. Section 4 shows the models 
produced by the hyperbox ML and the corresponding performances through confusion 
matrices and design code comparatives. The confusion matrices summarizes the 
prediction performances of the ML algorithm. Finally, Section 6 presents the concluding 
remarks. 
 
2. RESEARCH METHODOLOGY 
 
 The formulation of the rule-based models using the hyperbox classification model 
requires a database of sufficient size. Hence, this study initially analyzed 589 
experimental simply supported beam specimens from 65 studies, covering the period of 
1997 to 2020. The most featured articles in the database were from Elsevier (25 
studies), ASCE (17 studies), and ACI (8 studies). Overall, through the number of CFRP 
retrofitted RC beams, the database addresses the issues found in other analytical 
studies, such as (1) insufficient experimental RC beams to represent other specimens; 
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(2) no emphasis on FRP configuration; (3) no consideration for the anchorage effect of 
some CFRP configurations. It should be noted that only simply supported beams 
strengthened in shear with rectangular or T-shaped cross sections were investigated. 
Moreover, beams with any anchorage effect were excluded from this study. An 
overview of the initially considered parameters is as follows: 
 

• Beam geometry – beam height, width, span length, section (rectangular or T-
shaped), and effective depth 

• Concrete compressive strength 

• Loading – span-to-depth ratio, three- or four-point loading 

• Steel characteristics – type (plain or deformed), diameter, reinforcement ratio, 
yield strength, ultimate strength, and modulus of elasticity 

• FRP characteristics – number of layers, thickness, tensile strength, 
reinforcement ratio, modulus of elasticity, type (unidirectional or bidirectional), 
kind (side strip, side continuous sheet, U-strip, U-continuous sheet), angle, FRP 
width, FRP spacing, effective FRP depth, and ultimate strain 

• Experimental failure load 

 
 The initial number of parameters was reduced for the eventual processing of the 
parameter selection algorithm. The parameters that were consistently available across 
most, if not all, studies and had little to no need for assumptions were considered for 
further processing under the algorithm. External experimental factors (e.g., humidity) 
that were seen only in some studies were not taken for further processing. The 
compiled data samples underwent a min-max normalization to eliminate irrelevant and 
anomalous data. The normalization follows the equation below: 
 

 𝑣′ =
𝑣 − 𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴 − 𝑚𝑖𝑛𝐴
(𝑚𝑎𝑥𝐴,𝑛𝑒𝑤 − 𝑚𝑖𝑛𝐴,𝑛𝑒𝑤) + 𝑚𝑖𝑛𝐴,𝑛𝑒𝑤 (1) 

 
where: 
 
 𝑣′  output value in the specified range 
 𝑣  input value in the original range 
 𝑚𝑎𝑥𝐴  maximum value in the original range 

 𝑚𝑖𝑛𝐴  minimum value in the original range 
 𝑚𝑎𝑥𝐴,𝑛𝑒𝑤 maximum value in the specified range 

 𝑚𝑖𝑛𝐴,𝑛𝑒𝑤 minimum value in the specified range 

 
 Efficient algorithm analysis in determining the most influential parameters is 
essential to yielding accurate rule-based decision models using the hyperbox tool. A 
fitted decision tree algorithm using MATLAB was executed for this purpose. Decision 
trees are among the most utilized methods in data mining for their versatility, 
interpretability, and conciseness. The algorithm processing revealed that there are 
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seven influential parameters affecting 𝑉𝑓. These parameters are elaborated, in order of 

influence, with basic statistical features in Table 1. 
 
Table 1. Basic statistical information on the influential determined parameters. 

Parameter Symbol Min. Max. Mean Std. Dev. 

Concrete compressive strength 𝑓𝑐
′, MPa 12.4 71.4 36.7 12.6 

Shear span-to-depth ratio 𝑎/𝑑 1.19 6.90 2.77 0.73 
Stirrup reinforcement ratio 𝜌𝑠 0.000 0.010 0.003 0.002 
Longitudinal reinforcement ratio 𝜌𝐿 0.005 0.075 0.023 0.011 

FRP reinforcement ratio 𝜌𝐹𝑅𝑃 0.0002 0.0889 0.0048 0.0075 
Effective FRP depth 𝑑𝑓, mm 50.0 762.0 292.3 120.1 

Ultimate FRP strain 𝜀𝑢, % 4.0 21.3 15.1 3.4 

 
 
 A criterion must first be established to determine if the retrofitted CFRP-RC 
composite system can be considered safe. The designation of “safe” is given to 
retrofitted RC beams with sufficient CFRP shear strength contribution (𝑉𝑓). As seen in 

other studies (Naderpour & Alavi 2017; Ma et al 2019; Zhou et al 2020; Oller et al 
2021), the safety remark is set through the parameter 𝜇 (“mu”), with values greater 
than one (1) regarded as safe. The following equation defines this criterion: 
 

 𝜇 = 𝑉𝑓,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙/𝑉𝑓,𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 (2) 

 
 The values for 𝑉𝑓,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 refer to the ultimate shear strength of the RC beams 

retrofitted with EB CFRPs. Many models predicting 𝑉𝑓 have been formulated through 

experimental or analytical means. It can be observed from many studies that a common 
source of variation among the prediction models is the parameter effective strain, 𝜀𝑓𝑒, 

or its alternate form, effective stress, 𝑓𝑓𝑒 (Chen et al 2013; Abuodeh et al 2020; Kar et 

al 2021). This variability can be attributed to the various means of derivation, 
assumptions, and methods in determining the effective strain. A single equation for 
𝑉𝑓,𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 must thus be chosen. Hence, this study considers the model provided by 

the design code fib 14 as the basis for 𝑉𝑓,𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙. The values for 𝑉𝑓,𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 will be 

used to determine the associated 𝜇 values for each sample to be processed by the ML 

program. The corresponding 𝜇 values are essential to optimizing the dimensions and 
positions of the hyperboxes, as shown in the succeeding chapter. Considering 
limitations of the ML framework, the study only processed the samples that followed the 
given range of [0.7 ≤ 𝜇 ≤ 1.3]. Large spreads for 𝜇 made the program unable to reach 
a global optimum. The range restriction reduced the number of training samples to only 
76 beams. Nevertheless, the study managed to produce sufficiently accurate models. 
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3. MACHINE LEARNING FRAMEWORK 
 
 The rule-based decision equations produced from the hyperbox classification 
algorithm follow a novel MILP framework, as seen in Tan et al. (2020). The IF/THEN 
binary approach to misclassifications can be altered depending on the critical scenario 
(i.e., minimize false positives or negatives). This capability enables the optimization of 
the iterative binary rule generation. The algorithm variables are given as follows: 
 
Indices: 
 
 j sample (j = j1, j2, …, J) 
 i attribute (i = i1, i2, …, i7)  
 k hyperbox that sample j belongs to 
 

Sets: 
 
 SN all negative values used for training 

SP all positive values used for training 
NT total number of samples in SN 
PT total number of samples in SP 

 
Parameters: 
 
 Xji value of sample j for attribute i 

 𝑥𝑖𝑘
𝐿  lower bound of hyperbox k in dimension i 

𝑥𝑖𝑘
𝑈  upper bound of hyperbox k in dimension i 

𝑍𝑖𝑘
𝐿  lowest possible value of dimension i in hyperbox k 

𝑍𝑖𝑘
𝑈  highest possible value of dimension i in hyperbox k 

 ε misclassification probability threshold 
 M arbitrary large number for hyperbox generation 
 
Binary Variables: 
 

𝑐𝑗 1 if predicted 𝑉𝑓 is safe, else 0 

𝐶𝑗
∗ 1 if actual 𝑉𝑓 is safe, else 0 

𝑏𝑖𝑘
𝐿  inner lower hyperbox boundary activator 

𝑏𝑖𝑘
𝑈  inner upper hyperbox boundary activator 

𝑞𝑖𝑘
𝐿  outer lower hyperbox boundary activator 

𝑞𝑖𝑘
𝑈  outer upper hyperbox boundary activator 

 
Misclassification Variables: 
 
 𝜔 false positive 
 𝛾 false negative 
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 Determining the dimensions of each hyperbox is essential to classifying the 
samples for the bi-objective MILP. Each sample j is assigned a corresponding 
performance attribute i. The iterative binary rule generation minimizing the false 
positives in the dataset ran as follows. Eq. (4) and (5) define the proportions for the 
false positives and false negatives, respectively. Eq. (6) represents the threshold for 
the false negatives. 
 
 

 min 𝜔 (3) 

 

 𝜔 =
∑ (𝑐𝑗 − 𝐶𝑗

∗)𝑗

𝑁𝑇
, ∀𝑗 ∈ 𝑆𝑁 (4) 

 

 𝛾 =
∑ (𝐶𝑗

∗ − 𝑐𝑗)𝑗

𝑃𝑇
, ∀𝑗 ∈ 𝑆𝑃 (5) 

 
 𝛾 ≤ 𝜀 (6) 

 
  The outer and inner boundaries of the hyperboxes are defined by Eq. (7)-(8) and 
(9)-(10), respectively. The binary output variable, 𝑏𝑗𝑘, is given a value of 1 if the sample 

is within the hyperbox; otherwise, a value of 0 is assigned. The lower (𝑥𝑖𝑘
𝐿 ) and upper 

(𝑥𝑖𝑘
𝑈 ) boundaries are defined by Eq. (11)-(12) and (13)-(14), respectively.  

 
 

 𝑋𝑗𝑖 > 𝑥𝑖𝑘
𝐿 − ⊿ − 𝑀(1 − 𝑏𝑗𝑘), ∀𝑖, 𝑗 (7) 

 

 𝑋𝑗𝑖 < 𝑥𝑖𝑘
𝐿 + ⊿ + 𝑀(1 − 𝑏𝑗𝑘), ∀𝑖, 𝑗 (8) 

 

 𝑋𝑗𝑖 > 𝑥𝑖𝑘
𝐿 − 𝑀(1 − 𝑏𝑗𝑘), ∀𝑖, 𝑗 (9) 

 

 𝑋𝑗𝑖 < 𝑥𝑖𝑘
𝐿 + 𝑀(1 − 𝑏𝑗𝑘), ∀𝑖, 𝑗 (10) 

 

 𝑍𝑖𝑘
𝐿 − 𝑀(1 − 𝑏𝑖𝑘

𝐿 ) ≤ 𝑥𝑖𝑘
𝐿 ≤ 𝑍𝑖𝑘

𝐿 + 𝑀𝑏𝑖𝑘
𝐿 , ∀𝑖, 𝑘 (11) 
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 {
𝑍𝑖𝑘

𝐿 ≤ 𝑥𝑖𝑘
𝐿 ≤ 𝑍𝑖𝑘

𝐿 + 𝑀        ∀𝑖, 𝑘, 𝑏 = 1

𝑍𝑖𝑘
𝐿 − 𝑀 ≤ 𝑥𝑖𝑘

𝐿 ≤ 𝑍𝑖𝑘
𝐿         ∀𝑖, 𝑘, 𝑏 = 0

 (12) 

 

 𝑍𝑖𝑘
𝑈 − 𝑀𝑏𝑖𝑘

𝑈 ≤ 𝑥𝑖𝑘
𝑈 ≤ 𝑍𝑖𝑘

𝑈 + 𝑀(1 − 𝑏𝑖𝑘
𝑈 ), ∀𝑖, 𝑘 (13) 

 

 {
𝑍𝑖𝑘

𝑈 − 𝑀 ≤ 𝑥𝑖𝑘
𝑈 ≤ 𝑍𝑖𝑘

𝑈         ∀𝑖, 𝑘, 𝑏𝑖𝑘
𝑈 = 1

𝑍𝑖𝑘
𝑈 ≤ 𝑥𝑖𝑘

𝑈 ≤ 𝑍𝑖𝑘
𝑈 + 𝑀        ∀𝑖, 𝑘, 𝑏𝑖𝑘

𝑈 = 0
 (14) 

 
 Eq. (15)-(16) determines if a given sample j is within the dimensions of a given 
attribute i. The binary output variable is given a value of 0 if the sample lies outside the 

hyperbox. This scenario assigns a value of 1 to the outer activation variables (𝑞𝑖𝑘
𝐿  and 

𝑞𝑖𝑘
𝑈 ), as defined by Eq. (17) and (18). If the sample is within any of the produced 

hyperbox dimensions, Eq. (19) designates a value of 1 to the variable 𝑐𝑗. Eq. (20) is 

used to contract the hyperbox dimensions. Eq. (21) is a constraint for all binary 
variables used in the algorithm. 
 
 

 𝑋𝑗𝑖 ≤ 𝑥𝑖𝑘
𝐿 − ∆ + 𝑀(1 − 𝑞𝑖𝑗𝑘

𝐿 ), ∀𝑖, 𝑗 (15) 

 

 𝑋𝑗𝑖 ≥ 𝑥𝑖𝑘
𝑈 + ∆ − 𝑀(1 − 𝑞𝑖𝑗𝑘

𝑈 ), ∀𝑖, 𝑗 (16) 

 

 ∑ 𝑞𝑖𝑗𝑘
𝐿 + 𝑞𝑖𝑗𝑘

𝑈 ≤ 𝑀(1 − 𝑏𝑗𝑘), ∀𝑗, 𝑘

𝑖

 (17) 

 

 ∑ 𝑞𝑖𝑗𝑘
𝐿 + 𝑞𝑖𝑗𝑘

𝑈 ≥ (1 − 𝑏𝑗𝑘), ∀𝑗, 𝑘

𝑖

 (18) 

 

 ∑ 𝑏𝑗𝑘 ≤ 𝑀𝑐𝑗 , ∀𝑗

𝑘

 (19) 

 

 ∑ 𝑏𝑗𝑘 ≥ 𝑐𝑗 , ∀𝑗

𝑘

 (20) 
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 𝑏𝑗𝑘, 𝑏𝑖𝑘
𝑈 , 𝑏𝑖𝑘

𝐿 , 𝑄𝑖𝑗𝑘
𝑈 , 𝑄𝑖𝑗𝑘

𝐿 , 𝐶𝑗 ∈ {0,1} (21) 

 
4. RESULTS AND DISCUSSION 

 The hyperbox classification algorithm using the novel MILP framework of Tan et 
al. (2020) generated rule-based decision models for the CFRP retrofitted RC beams. 
During the data processing, the dataset was divided into two groups: training (60%) 
and validation (40%). Each training setup gave results for the two CFRP configurations 
under investigation (i.e., side-bond and U-wrap). The format of the rule-based decision 
models (representing one hyperbox each) which determines safe composite systems 
are as follows: 
 

 IF 𝑥1
𝐿 ≤ 𝑖1 ≤ 𝑥1

𝑈 AND 𝑥2
𝐿 ≤ 𝑖2 ≤ 𝑥2

𝑈… AND 𝑥𝑁
𝐿 ≤ 𝑖𝑁 ≤ 𝑥𝑁

𝑈 THEN 𝑉𝑓 = 1 

 
 False positives and negatives have critical implications for both the composite 
systems and the model predictions. Thus, their corresponding rough translations are 
given below. Type 1 errors, or false positives, pose severe threats in structural 
retrofitting considering the brittle nature of shear failure; hence, it is treated as the 
critical misclassification error in this study. 
 
Type 1 error (false positive): The beam is identified as adequately strengthened in 
shear by the EB CFRP, but it is actually not sufficiently strengthened. 
Type 2 error (false negative): The beam is identified as inadequately strengthened in 
shear by the EB CFRP, but it is actually sufficiently strengthened. 
 
 The first set of rules was generated to minimize the false negatives (𝛾) while 
keeping the false positives (𝜔) less than 0. The summary of the lower and upper 
bounds for the side-bonded and U-wrapped CFRP is shown in Table 2. 
 
Table 2. Boundaries for the parameters under Rule 1. 

Parameter Unit 
Side-bonded U-wrapped 

𝑋𝑖
𝐿 𝑋𝑖

𝑈 𝑋𝑖
𝐿 𝑋𝑖

𝑈 

𝑓𝑐
′ MPa 22.2 61.0 24.9 35.0 

𝑎/𝑑 - 1.19 3.20 1.50 5.02 

𝜌𝑠 - - 0.003 - 0.008 

𝜌𝐿 - 0.012 0.040 0.021 0.048 

𝜌𝐹𝑅𝑃 - 0.0010 0.0222 0.0007 0.0019 

𝑑𝑓 mm 107.5 417.1 285.0 482.6 

𝜀𝑢 % 7.7 19.2 10.4 20.7 

 
 
 The results for Rule 1 indicate that the rule applies to all retrofitted beams 
regardless of the internal transverse reinforcements. After the dimensions have been 
obtained through the training phase, the model will undergo the validation phase. The 
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prediction performances of the models for the validation phase, through the dimensions 
of “actual” and “predicted”, are shown in confusion matrices. Results show that 13 of 13 
safe retrofitted beams and 4 of 13 unsafe retrofitted beams were correctly identified, as 
summarized in the following confusion matrices (Table 3 and Table 4). Sample 
calculations to determine the false positives (𝜔𝑉) and false negatives (𝛾𝑉) are given as 
follows. These calculations are valid for all succeeding confusion matrix calculations. 
 
Type 1 errors / false positives of the validation group (𝜔𝑉) for Rule 1 (side-bonded): 
 

𝜔𝑉 =
4 − 4

4
= 0.000 

 
Type 2 errors / false negatives of the validation group (𝛾𝑉) for Rule 1 (side-bonded): 
 

𝛾𝑉 =
22 − 13

22
= 0.409 

 
Type 1 errors / false positives of the validation group (𝜔𝑉) for Rule 1 (U-wrapped): 
 

𝜔𝑉 =
15 − 14

15
= 0.067 

 
Type 2 errors / false negatives of the validation group (𝛾𝑉) for Rule 1 (U-wrapped): 
 

𝛾𝑉 =
7 − 1

7
= 0.857 

 
 
Table 3. Confusion matrix for side-bond CFRP using Rule 1 (𝜔𝑉 = 0.000; 𝛾𝑉 = 0.409). 

N = 26 Actual safe Actual unsafe 

Predicted safe 13 0 
Predicted unsafe 9 4 

 
 
Table 4. Confusion matrix for U-wrap CFRP using Rule 1 (𝜔𝑉 = 0.067; 𝛾𝑉 = 0.857). 

N = 22 Actual safe Actual unsafe 

Predicted safe 1 1 
Predicted unsafe 6 14 

 
 
 The second set of rules was generated with the objective of minimizing the false 
positives (𝜔) while keeping the false negatives (𝛾) less than 0. The summary of the 
lower and upper bounds for the side-bonded and U-wrapped CFRP is shown in Table 5. 
A model configured to minimize false negatives generally yields more conservative 
results, which are ideal to generate 𝑉𝑓 values that would render composite systems 

safe. The corresponding confusion matrices are given in Table 6 and Table 7. 
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Table 5. Boundaries for the parameters under Rule 2. 

Parameter Unit 
Side-bonded U-wrapped 

𝑋𝑖
𝐿 𝑋𝑖

𝑈 𝑋𝑖
𝐿 𝑋𝑖

𝑈 

𝑓𝑐
′ MPa 22.5 71.4 16.7 39.2 

𝑎/𝑑 - 1.22 3.20 1.50 5.00 

𝜌𝑠 - - 0.008 - 0.008 

𝜌𝐿 - 0.005 0.040 0.011 0.037 

𝜌𝐹𝑅𝑃 - 0.0002 0.0267 0.0005 0.0028 

𝑑𝑓 mm 110.0 500.0 153.1 542.9 

𝜀𝑢 % 7.7 19.2 10.5 20.7 

 
Table 6. Confusion matrix for side-bond CFRP using Rule 2 (𝜔𝑉 = 0.000; 𝛾𝑉 = 0.455). 

N = 26 Actual safe Actual unsafe 

Predicted safe 12 0 
Predicted unsafe 10 4 

 
Table 7. Confusion matrix for U-wrap CFRP using Rule 2 (𝜔𝑉 = 0.333; 𝛾𝑉 = 0.571). 

N = 22 Actual safe Actual unsafe 

Predicted safe 3 5 
Predicted unsafe 4 10 

 
 
 Multiple hyperboxes can also be utilized to explore other decision models, which 
may yield higher accuracies. This scenario can be executed by changing the 
predefined number of hyperboxes through the MILP framework. The logical disjunction 
“OR” is also added in the decision model for every hyperbox created. 
 
Table 8. Boundaries for the parameters under Rule 3. 

Group Parameter Unit 
Side-bonded U-wrapped 

𝑋𝑖
𝐿 𝑋𝑖

𝑈 𝑋𝑖
𝐿 𝑋𝑖

𝑈 

Box 1 

𝑓𝑐
′ MPa 22.2 71.7 22.4 32.8 

𝑎/𝑑 - 1.19 3.13 1.50 5.02 

𝜌𝑠 - - 0.008 - 0.008 

𝜌𝐿 - 0.014 0.040 0.017 0.048 

𝜌𝐹𝑅𝑃 - 0.0012 0.0118 0.0007 0.0008 

𝑑𝑓 mm 112.6 500.0 253.1 542.9 

𝜀𝑢 % 15.0 19.3 10.5 20.6 

𝑓𝑐
′ MPa 22.2 70.7 16.4 50.7 

 𝑎/𝑑 - 1.22 3.20 3.20 4.98 
 𝜌𝑠 - - 0.008 - 0.008 

Box 2 𝜌𝐿 - 0.005 0.037 0.010 0.032 
 𝜌𝐹𝑅𝑃 - - 0.0267 0.0004 0.0022 
 𝑑𝑓 mm 107.5 500.0 200.0 416.9 

 𝜀𝑢 % 7.6 17.0 15.0 20.7 
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 A possible disadvantage is the added complexity to the algorithm, which may 
result in the generation of a slower or unattainable result. Nevertheless, this study 
adopts a two-hyperbox approach to the two CFRP configurations set to minimize false 
positives while keeping false negatives less than 0.  
 
Table 9. Confusion matrix for side-bond CFRP using Rule 3 (𝜔𝑉 = 0.000; 𝛾𝑉 = 0.545). 

N = 26 Actual safe Actual unsafe 

Predicted safe 10 0 
Predicted unsafe 12 4 

 
Table 10. Confusion matrix for U-wrap CFRP using Rule 3 (𝜔𝑉 = 0.000; 𝛾𝑉 = 0.857). 

N = 22 Actual safe Actual unsafe 

Predicted safe 1 0 
Predicted unsafe 6 15 

 
 
 The accuracy must be assessed to determine the best-performing models for 
each configuration. The value for accuracy is given by Eq. (22) and the respective 
training accuracies for each model are given in Table 11. The results indicate that the 
best performing models for the two CFRP configurations are Rule 1 (side-bonded) and 
Rule 3 (U-wrapped) with the highest accuracies at 65.38% and 100.00%, respectively. 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (22) 

 
Table 11. Accuracy yields for the rule-based models. 

No. of 
Hyperboxes 

Rule Configuration Training Objective Accuracy, % 

One 

Rule 1 S-bonded Minimize 𝜸, 𝝎 < 𝟎 65.38 

Rule 1 U-wrapped Minimize 𝛾, 𝜔 < 0 68.18 

Rule 2 S-bonded Minimize 𝜔, 𝛾 < 0 61.54 

Rule 2 U-wrapped Minimize 𝜔, 𝛾 < 0 59.09 

Two 
Rule 3  S-bonded Minimize 𝜔, 𝛾 < 0 53.85 

Rule 3  U-wrapped Minimize 𝝎, 𝜸 < 𝟎 100.00 

 
 
 Assessment of the best-performing models was done with 52 retrofitted RC 
beams. It should be noted that these beams are different from those analyzed by the 
ML program. The configurations were split into 44% for the s-bonded CFRP and 56% 
for the U-wrapped CFRP, accounting for 23 and 29 beams, respectively. Table 12 and 
Table 13 summarize the corresponding performances of the best-performing models of 
each CFRP configuration. A red cell indicates that a sample is outside the boundaries 
for the said parameter. The sample must be within limits across all characteristics to be 
predicted safe (i.e., assigned a model value of 1). The 𝜇 is then assessed using 
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𝑉𝑓,𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 values based on ACI and fib 14. A sample is concluded to be accurately 

predicted if the model prediction matches the respective 𝜇 value of the design code. 
 
Table 12. Performances of governing model for side-bonded CFRP vs. design codes. 

Ref 
Parameters 

Model 
Design Code Conclusion 

𝑓′𝑐 𝑎/𝑑 𝜌𝑠 𝜌𝐿 𝜌𝐹𝑅𝑃 𝑑𝑓 𝜀𝑢 ACI fib ACI fib 

Ma et al. 
2020 

37.4 1.88 0.001 0.006 0.0003 300.0 21.3 unsafe unsafe unsafe correct correct 
37.4 1.88 0.001 0.006 0.0006 300.0 21.3 unsafe unsafe unsafe correct correct 

Beber 
and 

Campos 
Filho 
2005 

32.8 2.84 0.000 0.031 0.0007 300.0 14.8 unsafe safe safe wrong wrong 
32.8 2.84 0.000 0.031 0.0007 300.0 14.8 unsafe safe safe wrong wrong 
32.8 2.84 0.000 0.031 0.0007 300.0 14.8 unsafe safe safe wrong wrong 
32.8 2.84 0.000 0.031 0.0015 300.0 14.8 safe safe safe correct correct 
32.8 2.84 0.000 0.031 0.0015 300.0 14.8 safe safe safe correct correct 
32.8 2.84 0.000 0.031 0.0093 300.0 12.2 safe unsafe unsafe wrong wrong 
32.8 2.84 0.000 0.031 0.0066 300.0 12.2 safe unsafe unsafe wrong wrong 

Salama 
et al. 
2019 

47.2 2.16 0.010 0.006 0.0136 100.0 21.0 unsafe safe unsafe wrong correct 
47.2 2.16 0.010 0.006 0.0272 100.0 21.0 unsafe safe unsafe wrong correct 
47.2 2.16 0.010 0.006 0.0136 150.0 21.0 unsafe unsafe unsafe correct correct 
47.2 2.16 0.010 0.006 0.0272 150.0 21.0 unsafe unsafe unsafe correct correct 
47.2 2.16 0.010 0.006 0.0136 50.0 21.0 unsafe unsafe unsafe correct correct 
47.2 2.16 0.010 0.006 0.0272 50.0 21.0 unsafe safe unsafe wrong correct 

Allam 
and 

Ebeido 
2003 

40.0 2.57 0.003 0.029 0.0011 200.0 15.2 safe safe safe correct correct 

40.0 2.57 0.003 0.029 0.0011 200.0 15.2 safe safe safe correct correct 

40.0 2.57 0.003 0.029 0.0011 200.0 15.2 safe safe safe correct correct 

40.0 2.57 0.003 0.029 0.0022 200.0 15.2 safe safe safe correct correct 

40.0 2.57 0.003 0.029 0.0022 200.0 15.2 safe safe safe correct correct 

40.0 2.57 0.003 0.029 0.0022 200.0 15.2 safe safe safe correct correct 

40.0 1.71 0.003 0.029 0.0011 200.0 15.2 safe safe safe correct correct 

40.0 1.71 0.003 0.029 0.0022 200.0 15.2 safe safe safe correct correct 

 
Table 13. Performances of governing model for U-wrapped CFRP vs. design codes. 

Ref 
Parameters 

Model 
Design Code Conclusion 

𝑓′𝑐 𝑎/𝑑 𝜌𝑠 𝜌𝐿 𝜌𝐹𝑅𝑃 𝑑𝑓 𝜀𝑢 ACI fib ACI fib 

Ma et al. 
2020 

37.4 1.88 0.001 0.006 0.0003 300.0 21.3 unsafe unsafe unsafe correct correct 
37.4 1.88 0.001 0.006 0.0006 300.0 21.3 unsafe unsafe unsafe correct correct 

Beber and 
Campos 

Filho 2005 

32.8 2.84 0.000 0.031 0.0007 300.0 14.8 safe safe safe correct correct 
32.8 2.84 0.000 0.031 0.0007 300.0 14.8 safe safe safe correct correct 
32.8 2.84 0.000 0.031 0.0007 300.0 14.8 safe safe safe correct correct 
32.8 2.84 0.000 0.031 0.0007 300.0 14.8 safe safe safe correct correct 
32.8 2.84 0.000 0.031 0.0007 300.0 14.8 safe safe safe correct correct 
32.8 2.84 0.000 0.031 0.0005 300.0 14.8 unsafe safe safe wrong wrong 
32.8 2.84 0.000 0.031 0.0005 300.0 14.8 unsafe safe safe wrong wrong 
32.8 2.84 0.000 0.031 0.0015 300.0 14.8 unsafe safe safe wrong wrong 
32.8 2.84 0.000 0.031 0.0015 300.0 14.8 unsafe unsafe safe correct correct 

Alzate et 
al. 2013 

24.5 3.49 0.001 0.021 0.0023 420.0 16.7 unsafe unsafe unsafe correct correct 
30.7 3.49 0.001 0.021 0.0014 420.0 16.7 unsafe unsafe unsafe correct correct 
30.2 3.49 0.001 0.021 0.0013 420.0 15.8 unsafe unsafe unsafe correct correct 
30.2 3.49 0.001 0.021 0.0013 420.0 15.8 unsafe unsafe unsafe correct correct 
20.5 3.49 0.001 0.021 0.0008 420.0 15.8 unsafe unsafe unsafe correct correct 
30.7 3.49 0.001 0.021 0.0008 420.0 15.8 safe unsafe unsafe wrong wrong 

Jayapra- 
Kash et al 

2008 

27.4 2.50 0.000 0.017 0.0008 340.0 16.5 unsafe unsafe unsafe correct correct 
27.4 2.50 0.000 0.017 0.0008 340.0 16.5 unsafe safe safe wrong wrong 
27.4 2.50 0.000 0.011 0.0006 340.0 16.5 unsafe unsafe unsafe correct correct 
16.7 4.00 0.000 0.017 0.0008 340.0 16.5 safe safe safe correct correct 
16.7 4.00 0.000 0.017 0.0008 340.0 16.5 safe safe safe correct correct 
16.7 4.00 0.000 0.011 0.0008 340.0 16.5 safe unsafe unsafe wrong wrong 
16.7 4.00 0.000 0.011 0.0008 340.0 16.5 safe unsafe unsafe wrong wrong 
16.7 4.00 0.000 0.011 0.0008 340.0 16.5 safe unsafe unsafe wrong wrong 

Norris et 
al. 1997 

36.5 2.57 0.002 0.018 0.0315 203.0 11.4 unsafe unsafe unsafe correct correct 

36.5 2.57 0.002 0.018 0.0315 203.0 11.4 unsafe unsafe unsafe correct correct 

36.5 2.57 0.002 0.018 0.0315 203.0 11.8 unsafe unsafe unsafe correct correct 

36.5 2.57 0.002 0.018 0.0236 203.0 8.7 unsafe unsafe unsafe correct correct 
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 A 3D visualization of the hyperboxes on two parameter axes can be done to 
assess samples like those found in Table 12 and Table 13. The blue boxes in Figure 1 
represent the hyperboxes following the dimenions of the governing models. For 
example, the governing model for the side-bonded CFRP is Rule 1 (Table 2), and the 
concrete compressive strength follows the range [22.2 ≤ 𝑓𝑐

′ ≤ 61.0]. When the sample 
is inside the hyperbox concerning all the parameters, it is predicted safe. Conversely, 
when a sample is outside of the the hyperbox for at least one parameter, then it is 
predicted unsafe. Samples predicted to be safe are marked green, while those 
indicated as unsafe are marked red. The following example shows a visualiazation of a  
retrofitted RC beam predicted unsafe using the sample from Ma et al (2020) (first 
sample indicated in Table 12) shown in Figure 1. The sample is indicated by the yellow 
arrows. 
 
 Visualizations in ML assessment, though uncommon, play an important role 
especially in research and structural engineering. A primary function of 3D visualization 
is to provide decision-makers (e.g., engineers) a graphical view of any occurring trends 
concerning the hyperbox dimensions. This functionality may provide new insights on 
the influential parameters determined or the rule-based models generated (e.g., many 
samples fail the overall criteria due to certain parameter/s). 
 

  
(a) point is within boundary of 𝑓𝑐

′ and 𝑎/𝑑 
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(b) point is within boundary of 𝜌𝑠 but not 𝜌𝐿 
 

Figure 1. 3D visualualization of the side bonded CFRP beam sample (Ma et al) 
predicted as unsafe by the model. 

 
 The rule-based models produced in this study gave satisfactory results 
concerning similar studies reviewed (Abuodeh et al 2020; Zhou et al 2020; Kar et al 
2021). A summary of the performances is given in Figure 2. The results of the 
governing hyperbox model for the S-bonded CFRP yielded 18 of 23 (or 78%) and 15 of 
23 (or 65%) correct predictions using the fib 14 and ACI, respectively. Meanwhile, the 
results of the governing hyperbox model for the U-wrapped CFRP yielded 21 of 29 (or 
72%) and 22 of 29 (or 76%) correct predictions using the fib 14 and ACI, respectively.  
 
 The discrepancies between the figure above and the results from the validation 
phase illustrate several limitations of the MILP-based hyperbox classification modeling 
approach. One limitation is being unable to yield the same degree of accuracy 
consistently. This limitation can partially be attributed to the limited samples that the 
MILP can process to determine a global optimum. Another limitation is the non-
consideration of external factors in constructing this database. Only parameters 
explicitly given in the references (or required only minimal calculations and 
assumptions) were further processed to enhance the likelihood of producing an 
accurate model. 
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Figure 2. Performance summary of governing rule-based models. 

 
 
5. CONCLUSIONS AND RECOMMENDATIONS 
 
 The produced rule-based equations showcase an ML application with hyperboxes 
using a novel MILP approach. The work presented serves as an example of solving 
problems requiring binary decisions for critical but ambiguous scenarios. False positive 
(or Type 1) occurrences are considered the critical errors in this scenario. The best-
performing models determine if the composite CFRP-RC systems are safe based on 
the shear contribution (𝑉𝑓) of the EB CFRP. This study analyzed only side-bonded and 

U-wrapped CFRP on simply supported beams. The processed data from the combined 
samples reveal that there are seven influential parameters determining 𝑉𝑓 of the EB 

CFRP. The governing models yielded accuracies of 65.38% and 100.0% for the side-
bonded and U-wrapped CFRP, respectively, and mitigated the occurrence of false 
positives during the validation phase. The governing models yielded accurate 
predictions of 78% (S-bonded) and 72% (U-wrapped) with fib 14 and 65% (S-bonded) 
and 76% (U-wrapped) with ACI. The rule-based hyperbox models generated provided a 
feature of minimizing misclassification errors during their creation phase, translating to 
minimal prediction errors in actual applications. Therefore, a marked advantage for the 
hyperbox models is demonstrated over the capabilities of existing design codes. 
Overall, the models can serve as decision guidelines amidst the uncertainties in 
complex behaviors like shear mechanics.  
 
 Nevertheless, improvements can be made by future research to improve the 
accuracy yields of the best-performing rule-based models. One possibility is to try 
different frameworks aside from MILP for classifying samples. Another recommendation 
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is to derive closed-form solutions to analyze the effects of the parameters in 
determining the sufficiency of CFRP shear contribution. 
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